

Artificial Intelligence

Big Data in Agriculture

**Digital Agri
News e-Magazine**

Volume 01 || Issue 03

September 2025

Artificial Intelligence and Big Data in Agriculture

Chinmaya Sahoo

Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India-848125

In terms of any communication, correspondence is pertained to:
2303302004@rpcau.ac.in

Abstract

Agriculture today faces multiple challenges, including rising food demand, climate variability, and limited natural resources. Artificial Intelligence (AI) and Big Data are emerging as powerful tools to address these issues by enabling precision farming, predictive analytics, pest and disease detection, and smart resource management. By integrating data from sensors, satellites, and farm records, AI systems generate actionable insights that improve productivity, reduce

input costs, and promote sustainability. However, challenges such as data quality, infrastructure gaps, and ethical concerns must be addressed for wider adoption. This article explores applications, benefits, challenges, and future directions of AI and Big Data in agriculture, highlighting their role in shaping sustainable farming systems.

Keywords : AI, smart farming, pest detection, sustainable agriculture, digital farming.

Introduction

Modern agriculture is under pressure. The world population is growing. Climate change is disrupting weather patterns. Soil health is degrading. Water is becoming scarce. At the same time, farmers need to increase productivity and reduce waste. In this context, AI and Big Data are becoming powerful tools. They offer ways to make farming smarter, more efficient, and more sustainable. This article explores how AI and Big Data are being applied in agriculture, what benefits they bring, what challenges remain, and what the future may hold.

What are Big Data and AI in Agriculture?

Big Data refers to large volumes of data collected from many sources: satellite images, drones, sensors (soil moisture, temperature, etc.), weather stations, historical crop yields, market prices, and more. This data can be structured (numbers, tables) or unstructured (images, text) (Ahmed and Shakoor, 2025).

Artificial Intelligence (AI) involves computer systems that can learn from data, detect patterns, make predictions, or decide actions. Machine learning, deep learning, computer vision, natural language processing are AI techniques. When combined with Big Data, AI can help turn raw data into useful insights (Nawaz et al., 2025).

Key Applications

Here are some major ways AI and Big Data are being used in agriculture today:

i. Precision Farming

Using data from soil sensors, weather stations, drones, satellites to monitor conditions at a fine scale. AI models then suggest how much water, fertilizer, or pesticide is needed in different parts of a field. This reduces costs and environmental impact (Source: Farmonaut, 2025).

ii. Disease and Pest Detection

AI with computer vision can detect early signs of plant diseases or pest infestation from images. Early detection enables timely intervention, saving yield (Nautiyal et al., 2025).

iii. Yield Prediction

Predicting how much crop will be harvested, based on past yields, climate data, soil conditions. Helps farmers plan better, reduce risk, manage supply chains (Hussein et al., 2025).

iv. Smart Irrigation and Water Management

AI systems help decide when and how much to irrigate, based on soil moisture, weather forecasts, and crop requirements. This saves water and energy (Hussein et al., 2025).

v. Livestock Monitoring

In livestock farming, sensors and AI monitor animal health and behaviour. Deviations can signal disease or stress. Big Data helps to optimize feeding, breeding, and welfare (Ahmed and Shakoor, 2025; Hussein et al., 2025).

vi. Supply Chain Optimization

From harvesting to transport to market, AI helps with demand forecasting, logistics, and reducing waste. Big Data on market trends, prices, and consumer demand feed into these systems (Source: Farmonaut, 2025; Tamanna, 2025).

vii. Climate and Risk Management

AI helps simulate many scenarios of

weather, pests, or disasters. Farmers can use such information to plan for risk, for example when planting, when applying inputs, or choosing crops (McKinsey & Company, 2024; Nautiyal et al., 2025).

Benefits

Here are the benefits farmers and agricultural stakeholders gain by using AI + Big Data:

- Increased crop yield and productivity.
- Lower cost of inputs (fertilisers, pesticides, water).
- Better resource efficiency (water, soil, energy).
- Reduced environmental harm (less chemical run-off, lower greenhouse gas emissions).
- Faster responses to disease, pests, or adverse weather.
- Better decision-making based on evidence rather than guesses.
- Improved food security and reduced losses in post-harvest & supply chain.

Challenges

Despite great promise, there are several challenges:

i. Data Quality and Access

It is often hard to get good, clean, accurate data. Sensors may break. Weather stations may be sparse. Historical data may be missing or inconsistent.

ii. Cost and Infrastructure

Setting up sensors, drones, satellites, and digital systems requires investment. Many small-scale farmers in developing regions lack access to reliable electricity, internet, or financing.

iii. Technical Skills

Farmers or agricultural workers often need training to use AI tools or interpret their outputs.

iv. Scalability and Local Adaptation

Models developed elsewhere may not work well locally (soil types, climate, crop varieties vary). AI needs local calibration.

v. Privacy, Ownership and Ethical Issues

Who owns the data collected from farms? How to ensure data is used ethically? Farmers may worry about data misuse.

vi. Computational Resources

Some AI models (especially deep learning) require substantial computing power. Edge computing or cloud services help, but cost and connectivity can limit these options.

Case Studies / Examples

Here are some real-world examples that show how these tools are being used:

- In Kenya, small-scale farmers have used tools like Virtual Agronomist and PlantVillage. These tools give advice on fertiliser use and pest control. Farmers reported significantly higher yields and cost savings (The Guardian, 2024).
- In India, the state of Andhra Pradesh is launching a fully digital agriculture system from Kharif 2025 (APAEMS 2.0). It uses AI/ML to send plot-level pest and disease alerts, personalized advisories, and manage inputs/digital workflows (The Times of India, 2025a)
- Also in India, there is an AI-based system for managing pink bollworm, a pest affecting cotton. It uses hyperspectral sensors and data analysis to track soil and pest conditions (The Times of India, 2025b).
- Research studies: A recent survey of over 200 works covered how deep

learning and other AI techniques are applied in crops, fisheries, livestock. Challenges like data variability and model adaptability were highlighted (Nawaz et al., 2025).

What the Future Might Bring

Looking ahead, here are some trends and potentials:

- **Edge AI:** Running AI models directly on devices in the field (sensors, farm robots) to reduce latency and dependency on internet/cloud.
- **Explainable AI:** Models that can explain why they made a particular recommendation. This helps build trust among farmers. For example, AgroXAI is a proposed system that recommends crops while showing how it reached the decision (Turgut et al., 2024).

- **Generative AI and Simulations:** Using AI to simulate many possible future scenarios for disease spread, climate stress, etc. Helps in planning and breeding (McKinsey & Company, 2024).
- **Better Integration of Multimodal Data:** Combining image data, sensor data, weather data, market data etc., to get more holistic insights.
- **Policy support, better infrastructure, and inclusive design:** For AI and Big Data to help smallholder farmers, policies will need to support access, training, affordability, and ensure fair data practices.

Conclusion

AI and Big Data together are reshaping agriculture. They offer tools to increase productivity, reduce waste, and make farming more sustainable. The benefits are clear—from precision farming to better pest control to smarter irrigation. But the technology is not a silver bullet. Data quality, local adaptation, cost, and ethical issues still present serious challenges. If agriculture stakeholders—governments, research institutions, tech providers, and farmers—work together, the promise of AI + Big Data can be fulfilled. The future of farming may very well depend on it.

References

- [1] Ahmed N., Shakoor N. (2025). Advancing agriculture through IoT, Big Data, and AI: A review of smart technologies enabling sustainability. *Smart Agricultural Technology*, 10: 100848. <https://doi.org/10.1016/j.atech.2025.100848>
- [2] Farmonaut. Revolutionizing Agriculture: How AI and Big Data are Powering Smart Farming Solutions with Farmonaut. Available online at: <https://farmonaut.com/precision-farming/revolutionizing-agriculture-how-ai-and-big-data-are-powering-smart-farming-solutions-with-farmonaut> [Accessed on 17 September 2025].
- [3] Hussein J.B., Workneh T.S., Kassim A., Ntsowe K., Melesse S.F., El-Mesery H.S. (2025). A review on the impact of big data analytics in transforming agricultural practices, food processing, and preservation strategies. *Applied Food Research*, 5(2): 101234. <https://doi.org/10.1016/j.afres.2025.101234>
- [4] McKinsey & Company (2024). From bytes to bushels: How gen AI can shape the future of agriculture. Available at: <https://www.mckinsey.com/industries/agriculture/our-insights/from-bytes-to-bushels-how-gen-ai-can-shape-the-future-of-agriculture>

References

[5] Nautiyal M., Joshi S., Hussain I., Rawat H., Joshi A., Saini A., Kapoor R., Verma H., Nautiyal A., Chikara A., Ahmad W., Kumar S. (2025). Revolutionizing agriculture: A comprehensive review on artificial intelligence applications in enhancing properties of agricultural produce. *Food Chem X*, 29:102748. doi: 10.1016/j.fochx.2025.102748.

[6] Nawaz U., Zaheer M.Z., Khan F.S., Cholakkal H., Khan S., Anwer R.M. (2025). AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock. <https://doi.org/10.48550/arXiv.2507.22101>

[7] Tamanna Y. (2025). AI in Agriculture: A Strategic Guide for Industry Leaders [2025-2030]. StartUs Insights. Available online at: <https://www.startus-insights.com/innovators-guide/ai-in-agriculture-strategic-guide>

[8] The Guardian (2024). High tech, high yields? The Kenyan farmers deploying AI to increase productivity. Available online at: <https://www.theguardian.com/world/2024/sep/30/high-tech-high-yields-the-kenyan-farmers-deploying-ai-to-increase-productivity> [Accessed on 17 September 2025].

[9] The Times of India (2025a). Andhra Pradesh to fully digitize agriculture from Kharif 2025. Available online at: <https://timesofindia.indiatimes.com/city/vijayawada/andhra-pradesh-to-fully-digitize-agriculture-from-kharif-2025/articleshow/121891066.cms> [Accessed on 17 September 2025].

[10] The Times of India (2025b). Union agri min to launch AI-based bollworm mgmt. Available online at: <https://timesofindia.indiatimes.com/city/nagpur/union-agri-min-to-launch-ai-based-bollworm-mgmt/articleshow/121219879.cms> [Accessed on 17 September 2025].

[11] Turgut O., Kok I., Ozdemir S. (2024). AgroXAI: Explainable AI-Driven Crop Recommendation System for Agriculture 4.0. <https://doi.org/10.48550/arXiv.2412.16196>