

ECOLOGICAL IN- TENSIFICATION

Interactions within agro-ecosystems for Sustainable Agriculture

Dileep Meena¹, Hans Raj Meel², Vivek Singh², Bharat Bhushan Rana², Mridula², Komal Meena¹, Manish Kumar², Sk Asraful Ali¹, Vijendra Kumar Verma¹, Jitendra Kumar Yadav¹

**ICAR- Indian Agricultural Research institute,
New Delhi – 110012**

**Chaudhary Sarwan Kumar Himachal Pradesh
Krishi Vishvavidyalaya, Palampur – 176062**

VOLUME 01, ISSUE-02

August 2025 || Digital AgriNews e-Magazine

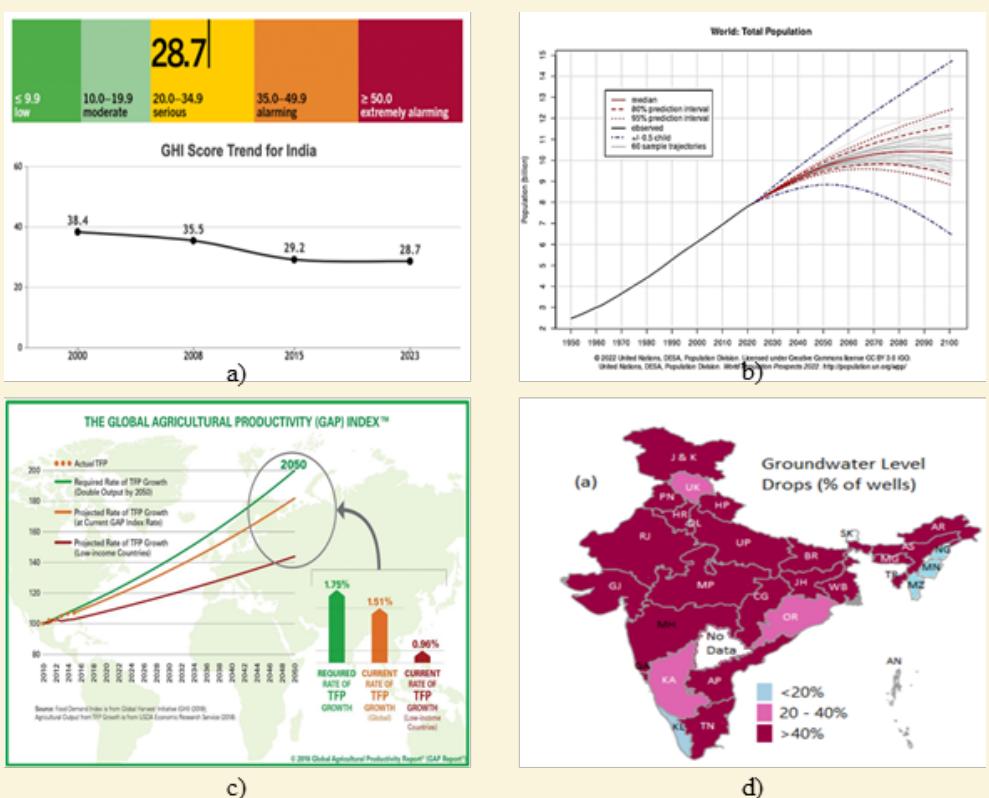
Introduction

Ever-increasing population and massive food demand are among the major challenges for global agriculture, and India is no exception. It is estimated that global food requirements will rise by 70% by 2050 (FAO, 2009). In pursuit of higher yields to ensure a food-secure world, intensive agriculture has been widely adopted. However, modern agriculture is facing growing unsustainability due to stagnating productivity, increasing food demand, livelihood pressures, and continued reliance on out-dated methods. These challenges have led to overexploitation of natural resources, deforestation, biodiversity loss, and elevated greenhouse gas emissions. Groundwater levels in Punjab, Haryana, Rajasthan, and Gujarat have dropped drastically (Biswas, et al., 2025). Alongside this, land degradation caused by human-induced activities continues to reduce the productive capacity of soils. Addressing these issues necessitates a shift toward sustainable agriculture, it is defined as an integrated system of plant and animal production practices that are site-specific and aim to ensure long-term food and fibre needs. It focuses on enhancing environment-

Abstract

Ecological intensification (EI) is emerging as a promising approach to address the dual challenge of increasing food production and conserving the environment. It integrates ecological principles such as nutrient cycling, biodiversity conservation, and including ecosystem service into conventional agricultural systems by using practices such as agroforestry, crop diversification, integrated farming systems (IFS), conservation agriculture, and precision farming etc. Unlike input-intensive agriculture, Ecological intensification is based on traditional knowledge and site-specific resources to enhance productivity while reducing the environmental footprint. It supports sustainable livelihoods, builds resilience against climate variability, and conserves biodiversity, making it an ideal sustainable food production model. This article presents the principles, practices, and potential of ecological intensification to transform agriculture toward sustainability.

Keywords- Crop diversification, biodiversity, environmental quality, ecosystem services


-al quality, efficiently using natural and farm-based resources, ensuring economic viability of farms, and improving the quality of life for both farmers and society (National Agricultural Library USDA). Further the concept ecological intensification is a new concept that focuses on sustaina-

-ble production by judicious use of resources within the agro-ecosystems as the agriculture is human managed ecosystem. In this context, the concept of ecological intensification (EI) was introduced to describe a production system that promotes increased productivity through natural ecological

processes rather than chemical intensification. It encompasses practices such as agroforestry, conservation tillage, cover cropping, integrated pest and nutrient management, and precision farming—offering a viable pathway to enhance ecosystem services while reducing environmental impacts like nitrogen losses and carbon emissions (Ullah et al., 2020).

1 CAN CONVENTIONAL AGRI-CULTURE FEED THE WORLD?

Here we are discussing about current status of food security, available resources and productivity trend in agriculture as compare to population growth. In the 2023 Global Hunger Index, India ranked 111th out of 125 countries, with a score of 28.7, placing it in the “serious” category. Meanwhile, the global population is projected to rise to 9.7 billion by 2050 and 10.4 billion by 2100 (UN DESA, 2022).

Figure 1: a) Trend of global hunger index for, b) World population projection, c) Global projection of required and current rate of agricultural productivity, d) Map highlighting ground water depletion

This growth (Figure 1b) will significantly increase the pressure on food production systems. However, current trend in total factor productivity (TFP) growth globally is insufficient to meet future food demands. The rate required to double agricultural output sustainably by 2050 is estimated at 1.75% annually, which is currently only 1.51% (GAP Report, 2018).

2

ECOLOGICAL INTENSIFICATION:

The concept of ecological intensification given by Egger (1986), later defined by Cassman, (1999) that intensification of production systems that satisfy the anticipated increase in food demand while meeting acceptable standards of environmental quality or Environmentally friendly intensification appears as win-win strategy leading to both an increase of crop yields and decrease of environmental impact (in particular, carbon emissions and nitrogen losses) (Ullah et al., 2020).

PRINCIPLES OF ECOLOGICAL INTENSIFICATION (WEZEL ET AL., 2015)

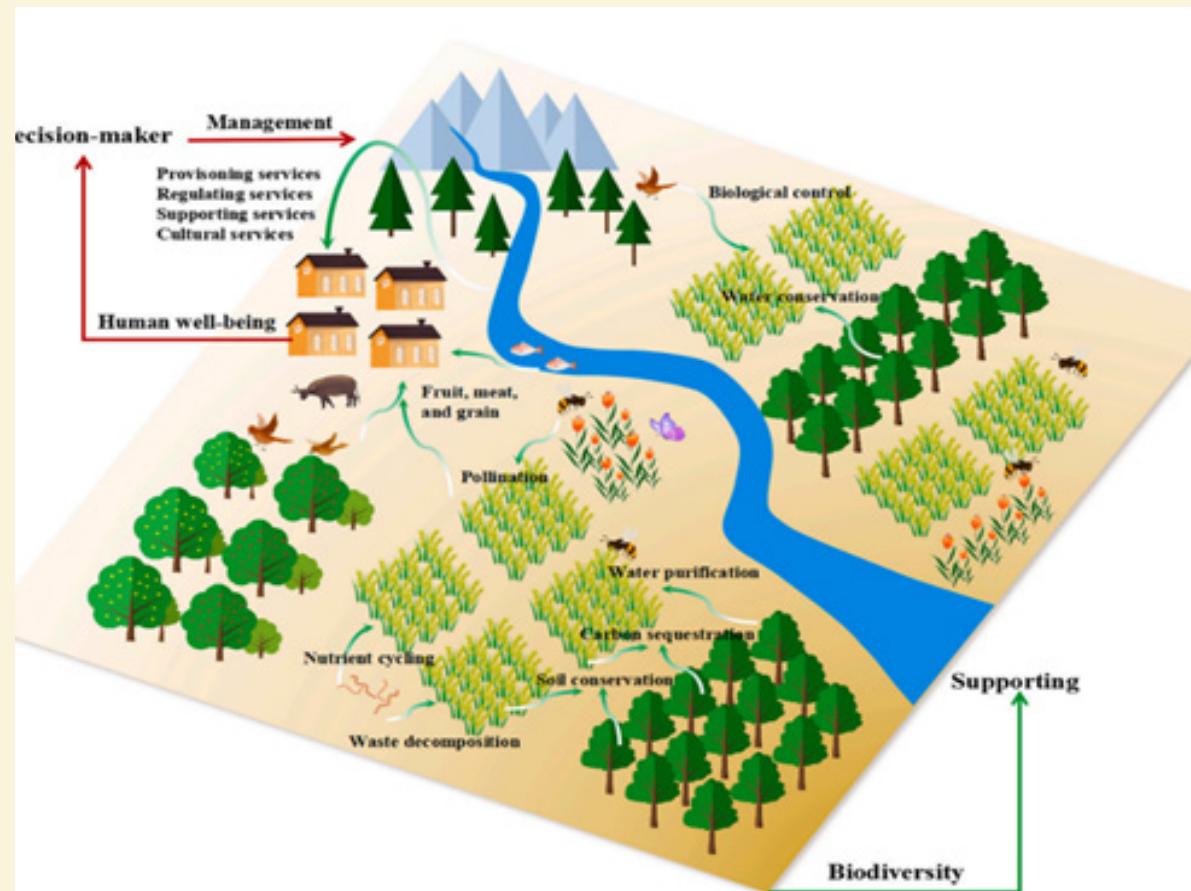
These principles were given based on keywords used in different scientific publications:

- Minimizing the negative impact of modern agriculture

- Increase resource use efficiency
- Enhance ecology-based processes and services
- Minimizing use of external inputs and focusing in recycling of on-farm inputs
- Recognizing traditional knowledge for resource conservation
- Maintain the soil health and biodiversity
- System approach
- Social and cultural perspective

3 MAJOR PRACTICES UNDER EI

Ecological intensification includes all the practices which uses resources judiciously to contribute in sustainable production viz. crop rotation, integrated nutrient management, integrated farming system, agroforestry, organic farming, intercropping precision agriculture, direct seeded rice, fertigation and conservation agriculture.


4

ECOSYSTEM AND AGRO-ECOSYSTEM FUNCTIONS

An ecosystem is a “A dynamic complex of plant, animal, microorganism communities and the non-living environment interacting as a functional unit.” It functions through key principles like energy flow, nutrient cycling, biodiversity, interdependence, and resilience (Millennium Ecosystem Assessment, 2005).

These same principles followed under agro-ecosystems, where energy from the sun supports plant life, and natural cycles maintain soil fertility and pest control. Agro-ecosystems differ that they are deliberately shaped by human interventions to boost food production. However, when designed ecologically, they can mimic natural ecosystems, providing numerous services. An agro-ecosystem further can be defined as “a specific type of ecosystem that is designed and managed by humans for the purpose of food, fibre, and fuel production. It includes all living organisms (crops, livestock, pests, beneficial organisms) and non-living components (soil, water, climate) interacting within an agricultural system.” Agroecosystems are influenced not only by ecological processes but also by social, economic, and technological factors.

Ecosystem services within the agro-ecosystem (Liu et al., 2022): Ecosystem services are the benefits that humans derive from ecosystems. These services mainly divided in to four categories:

Figure 2: Ecological services within agro-ecosystems

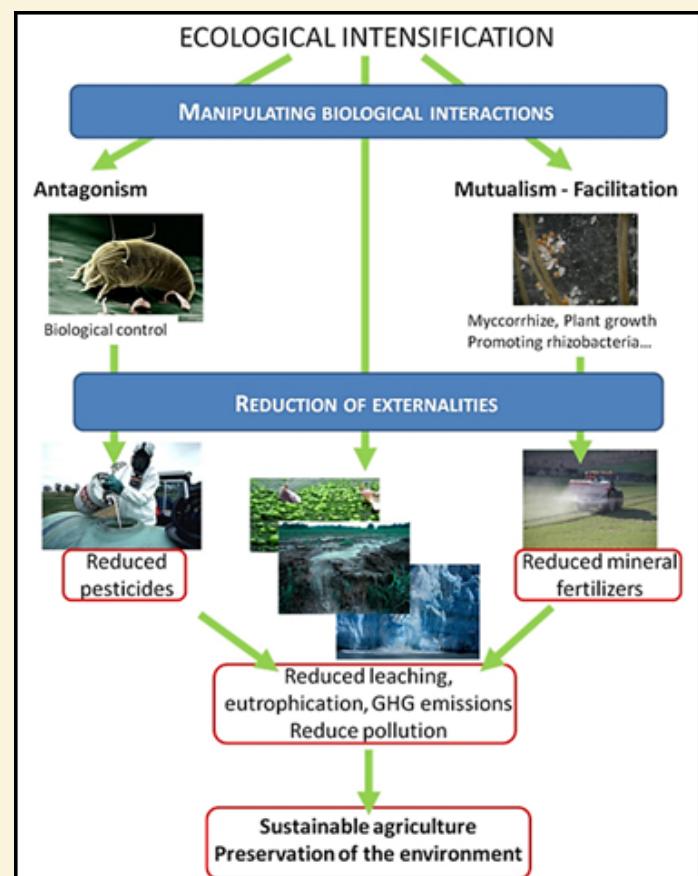
I. Provisioning Services

- **Food production:** This is the most obvious service and the primary reason for agriculture.
- **Fiber production:** Crops like cotton, flax, and hemp provide fibres for textiles.
- **Biofuels:** Crops like corn, sugarcane, and rapeseed can be used to produce biofuels.

II. Regulating Services

- **Pollination:** Bees, butterflies, and other pollinators are essential for many crops, including fruits, vegetables, and nuts.
- **Pest control:** Natural predators like birds, insects, and bats help control pests in agricultural systems.
- **Water filtration:** Healthy ecosystems, such as wetlands, help filter and purify water, which is crucial for agriculture.
- **Climate regulation:** Forests and other ecosystems absorb carbon dioxide, helping to regulate the climate.

III. Supporting Services


- **Soil formation and maintenance:** Healthy soils are essential for plant growth and are formed over long periods through natural processes.
- **Nutrient cycling:** Ecosystems recycle nutrients like nitrogen, phosphorus, and potassium, which are essential for plant growth.
- **Biodiversity:** Biodiversity provides genetic diversity, which is important for the resilience of agricultural systems.

IV. Cultural Services

- **Recreational opportunities:** Farms and agricultural landscapes can provide recreational opportunities like hiking, fishing, and birdwatching.
- **Cultural heritage:** Agriculture is often tied to cultural traditions and heritage.
- **Aesthetic value:** Agricultural landscapes can be beautiful and contribute to the quality of life.

INTERACTIONS WITHIN AGRO-ECOSYSTEMS

5

Figure 3: Interaction within agro-ecosystems (Wezel et al., 2015).

Ecological intensification enhances and manages biological interactions within agroecosystems to promote sustainability. It focuses on key processes like antagonism such as biological control of pests and mutualism or facilitation like symbiosis with mycorrhizal fungi, plant growth-promoting rhizobacteria etc. These natural interactions reduce reliance on synthetic inputs such as pesticides and mineral fertilizers, thereby minimizing environmental externalities like chemical runoff, nutrient leaching, and greenhouse gas emissions. At the same time, they support crucial ecosystem services including soil fertility, nutrient cycling, and pest regulation.

Conclusion

EI is a knowledge intensive long-term process which is a sustainable alternative to conventional agriculture by addressing the critical need to balance agricultural productivity with environmental sustainability. EI enhances natural processes such as nutrient cycling, pest regulation, and biodiversity conservation within agro-ecosystems. It minimizes dependency on synthetic inputs, improves resource use efficiency, and promotes ecosystem health. EI not only addresses the limitations of conventional practices but also aligns agricultural development with long term ecological balance and socio-economic wellbeing.

Future Prospects

- Identify the traditional knowledge for conserving the local biodiversity and better resource management.
- Integration of new technologies in harmony with ecosystem services.
- We need to focus more on soil biological health. As it plays crucial role in recycling of nutrient and their availability.
- Future research should be based on developing strategies by address socio-ecological conditions of Indian farmers.

- Biswas, A., Sarkar, S., Das, S., Dutta, S., Choudhury, M. R., Giri, A., Bera, B., Bag, K., Mukherjee, B., Bannerjee, K. and Gupta, D. 2025. Water scarcity: A global hindrance to sustainable development and agricultural production – A critical review of the impacts and adaptation strategies. Cambridge Prisms: Water, 3:e4.
- Cassman, K. G. 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences USA, 96: 5952–5959.

REFERENCES

- Egger, K. 1986. Ecological intensification. Soil conservation and improvement of tropical soils by pastoral agroforestry systems. Collect Docum Syst Agrair, 6: 129–135.
- FAO. 2009. How to feed the world in 2050. Food and Agriculture Organization of the United Nations.
- GAP Report. 2018. Global Agricultural Productivity Report: Productivity growth for sustainable food future. Global Harvest Initiative.
- Liu, Q., Sun, X., Wu, W., Liu, Z., Fang, G. and Yang, P. 2022. Agroecosystem services: A review of concepts, indicators, assessment methods and future research perspectives. Ecological Indicators, 142: 109218.
- Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being: Synthesis. Island Press.
- National Agricultural Library, USDA. Sustainable agriculture: Definitions and terms. United States Department of Agriculture.
- Ullah, S., Ai, C., Huang, S., Song, D., Abbas, T., Zhang, J., Zhou, W. and He, P. 2020. Substituting ecological intensification of agriculture for conventional agricultural practices increased yield and decreased nitrogen losses in North China. Applied Soil Ecology, 147: 103395.
- UN DESA. 2022. World population prospects. United Nations Department of Economic and Social Affairs.
- Wezel, A., Soboksa, G., McClelland, S., Delespesse, F. and Boissau, A. 2015. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agronomy for Sustainable Development, 35: 1283–1295.